Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 340

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of a radiation tolerant laser-induced breakdown spectroscopy system using a single crystal micro-chip laser for remote elemental analysis

Tamura, Koji; Nakanishi, Ryuzo; Oba, Hironori; Karino, Takahiro; Shibata, Takuya; Taira, Takunori*; Wakaida, Ikuo

Journal of Nuclear Science and Technology, 8 Pages, 2024/00

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Precise lifetime measurement of $$^4_Lambda$$H hypernucleus using in-flight $$^4$$He$$(K^-, pi^0)^4_Lambda$$H reaction

Akaishi, Takaya; Hashimoto, Tadashi; Tanida, Kiyoshi; 35 of others*

Physics Letters B, 845, p.138128_1 - 138128_4, 2023/10

 Times Cited Count:1 Percentile:68.16(Astronomy & Astrophysics)

Journal Articles

Neutron resonance fission neutron analysis for nondestructive fissile material assay

Hironaka, Kota; Lee, J.; Koizumi, Mitsuo; Ito, Fumiaki*; Hori, Junichi*; Terada, Kazushi*; Sano, Tadafumi*

Nuclear Instruments and Methods in Physics Research A, 1054, p.168467_1 - 168467_5, 2023/09

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

Journal Articles

A New application technique of a position-sensitive liquid light guide Cerenkov counter for the simultaneous position detection of $$^{90}$$Sr/$$^{90}$$Y and $$^{137}$$Cs radioactivity

Terasaka, Yuta; Uritani, Akira*

Nuclear Instruments and Methods in Physics Research A, 1049, p.168071_1 - 168071_7, 2023/04

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

JAEA Reports

Evaluation of insertion property of control rod of JRR-3 at earthquake by time history response analysis method

Kawamura, Sho; Kikuchi, Masanobu; Hosoya, Toshiaki

JAEA-Technology 2021-041, 103 Pages, 2023/02

JAEA-Technology-2021-041.pdf:8.7MB

In response to new regulatory standard for research and test reactor which is enforced December 2013, JRR-3 got license in November 2018 by formulate new design basis ground motion. After that we evaluated for insertion property of control rod using that new design basis ground motion, and that evaluation results were accepted as approval of the design and construction method by Nuclear Regulation Authority. Now, we re-evaluated to insertion property of control rod about neutron absorber and follower fuel element by time history response analysis method. In this report, it shows that new results have sufficiency of margin compared with the past results that are accepted as approval of the design and construction method.

Journal Articles

Investigation of random beam trips in a linear accelerator at the Japan Proton Accelerator Research Complex for the development of an accelerator-driven nuclear transmutation system

Takei, Hayanori

Journal of Nuclear Science and Technology, 14 Pages, 2023/00

 Times Cited Count:0 Percentile:0.18(Nuclear Science & Technology)

In the proton linear accelerator (linac), the proton beam is unexpectedly interrupted due to the electrical discharge originating from the radio frequency, failure of the device/equipment, or other factors. Do these beam trips occur randomly? Conventionally, it has been implicitly assumed that beam trips occur randomly. In this study, we investigated whether beam trips in the linac of the Japan Proton Accelerator Research Complex (J-PARC) occur randomly to estimate the beam trip frequency in a superconducting proton linac for an accelerator-driven nuclear transmutation system. First, the J-PARC linac was classified into five subsystems. Then, the reliability function for the operation time in each subsystem was obtained using the Kaplan--Meier estimation, a reliability engineering methods. Using this reliability function, the randomness of beam trips was examined. Analysis of five-year operational data for five subsystems of the J-PARC linac showed that beam trips occurred randomly in some subsystems. However, beam trips did not occur randomly in many subsystems of the proton linac, including the ion source and the acceleration cavity, the primary subsystems of the proton linac.

Journal Articles

Measurements of the neutron total and capture cross sections and derivation of the resonance parameters of $$^{181}$$Ta

Endo, Shunsuke; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Osamu; Iwamoto, Nobuyuki; Rovira Leveroni, G.; Toh, Yosuke; Segawa, Mariko; Maeda, Makoto

Nuclear Science and Engineering, 18 Pages, 2023/00

 Times Cited Count:1 Percentile:72.91(Nuclear Science & Technology)

JAEA Reports

Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Nagoya University*

JAEA-Review 2022-033, 80 Pages, 2022/12

JAEA-Review-2022-033.pdf:4.08MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The present study aims to develop an optical fiber type radiation sensor that can measure the radiation distribution one-dimensionally along the fiber under a high radiation field for the decommissioning of 1F. Based on the conventional time-of-flight method, we found several promising sensor candidates for the radiation distribution measurement under high dose rate and many scattered gamma-rays.

Journal Articles

Measurement of 107-MeV proton-induced double-differential neutron yields for iron for research and development of accelerator-driven systems

Iwamoto, Hiroki; Nakano, Keita; Meigo, Shinichiro; Satoh, Daiki; Iwamoto, Yosuke; Ishi, Yoshihiro*; Uesugi, Tomonori*; Kuriyama, Yasutoshi*; Yashima, Hiroshi*; Nishio, Katsuhisa; et al.

JAEA-Conf 2022-001, p.129 - 133, 2022/11

For accurate prediction of neutronic characteristics for accelerator-driven systems (ADS) and a source term of spallation neutrons for reactor physics experiments for the ADS at Kyoto University Critical Assembly (KUCA), we have launched an experimental program to measure nuclear data on ADS using the Fixed Field Alternating Gradient (FFAG) accelerator at Kyoto University. As part of this program, the proton-induced double-differential thick-target neutron-yields (TTNYs) and cross-sections (DDXs) for iron have been measured with the time-of-flight (TOF) method. For each measurement, the target was installed in a vacuum chamber on the beamline and bombarded with 107-MeV proton beams accelerated from the FFAG accelerator. Neutrons produced from the targets were detected with stacked, small-sized neutron detectors composed of the NE213 liquid organic scintillators and photomultiplier tubes, which were connected to a multi-channel digitizer mounted with a field-programmable gate array (FPGA), for several angles from the incident beam direction. The TOF spectra were obtained from the detected signals and the FFAG kicker magnet's logic signals, where gamma-ray events were eliminated by pulse shape discrimination applying the gate integration method to the FPGA. Finally, the TTNYs and DDXs were obtained from the TOF spectra by relativistic kinematics.

JAEA Reports

Identification of altered phases of fuel debris by laser fluorescence spectroscopy (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-007, 59 Pages, 2022/06

JAEA-Review-2022-007.pdf:2.09MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Identification of altered phases of fuel debris by laser fluorescence spectroscopy" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to identify alteration phases occurring on the surface fuel debris at various conditions, using time-resolved laser fluorescence spectroscopy (TRLFS), which is a selective analytical technique for U(VI), a major constituent of fuel debris and stable in oxidizing conditions.

Journal Articles

Simultaneous determination of zircon crystallisation age and temperature; Common thermal evolution of mafic magmatic enclaves and host granites in the Kurobegawa granite, central Japan

Yuguchi, Takashi*; Yamazaki, Hayato*; Ishibashi, Kozue*; Sakata, Shuhei*; Yokoyama, Tatsunori; Suzuki, Satoshi*; Ogita, Yasuhiro; Sando, Kazusa*; Imura, Takumi*; Ono, Takeshi*

Journal of Asian Earth Sciences, 226, p.105075_1 - 105075_9, 2022/04

 Times Cited Count:4 Percentile:49.4(Geosciences, Multidisciplinary)

Simultaneous determination of the U-Pb age of zircon and concentration of titanium in a single analysis spot, using inductively coupled plasma mass spectrometry with laser ablation sample introduction, produces paired age and temperature data of zircon crystallisation, potentially revealing time-temperature ($$t-T$$) histories for evolved magma. The Kurobegawa granite, central Japan, contains abundant mafic magmatic enclaves (MMEs). We applied this method to evaluate MMEs and their host (enclosing) granites. Cooling behaviour common to both MMEs and host rocks was found between 1.5 and 0.5 Ma. Rapid cooling from the zircon crystallisation temperature to the closure temperature of biotite K-Ar system was within $$sim$$1 million year. Combining the obtained $$t-T$$ paths of MMEs and host rocks with petrological information can provide insights into magma chamber processes. This suggests that MME flotation, migration, and spread through the magma chamber ceased at 1.5-0.5 Ma, indicating the emplacement age of the Kurobegawa granitic pluton, as no large-scale reheating episodes have occurred since then.

Journal Articles

Neutron capture and total cross-section measurements and resonance parameter analysis of niobium-93 below 400 eV

Endo, Shunsuke; Kimura, Atsushi; Nakamura, Shoji; Iwamoto, Osamu; Iwamoto, Nobuyuki; Rovira Leveroni, G.; Terada, Kazushi*; Meigo, Shinichiro; Toh, Yosuke; Segawa, Mariko; et al.

Journal of Nuclear Science and Technology, 59(3), p.318 - 333, 2022/03

 Times Cited Count:5 Percentile:65.59(Nuclear Science & Technology)

Journal Articles

Development of dispersed phase tracking method for time-series 3-dimensional interface shape data

Horiguchi, Naoki; Yoshida, Hiroyuki; Yamamura, Sota*; Fujiwara, Kota*; Kaneko, Akiko*; Abe, Yutaka*

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 14 Pages, 2022/03

Journal Articles

A Proposal of optimum calculation settings of continuous wavelet transform in magnetotelluric data processing

Ogawa, Hiroki; Hama, Yuki*; Asamori, Koichi; Ueda, Takumi*

Butsuri Tansa, 75, p.38 - 55, 2022/00

In the magnetotelluric (MT) method, so as to identify the subsurface resistivity structure, the apparent resistivity and phase profiles are calculated by transforming time-series data into spectral data. The continuous wavelet transform (CWT) is well known as a new method of time-frequency analysis instead of the short-time Fourier transform. The CWT is superior in processing non-stationary wideband signals like the MT signal by adjusting the size of the wavelet according to the value of frequency. However, the calculation settings of the CWT, such as the type of basis function and the wavelet parameter, are often determined empirically because of the arbitrariness of the shape of the wavelet. Although there might be differences between the calculated MT responses and the true responses due to improper settings of the CWT, there are no detailed studies considering the effect of numerical errors derived from spectral transforms on MT data. In this study, focusing on the frequency band between 0.001 Hz and 1 Hz, we examined the optimum calculation settings of the CWT in processing MT data in terms of suppressing the numerical errors caused by the spectral transform of time-series data. We also show the validity of the proposed calculation settings by applying the CWT to MT survey data of different types. Superiority of the CWT with proposed settings is suggested especially when the signal-to-noise ratio of observed data is low. Consequently, the proposed calculation settings were confirmed to strike a balance between the resolutions of the time and frequency domains well and will therefore be effective in obtaining reliable MT responses.

JAEA Reports

Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Nagoya University*

JAEA-Review 2021-033, 55 Pages, 2021/12

JAEA-Review-2021-033.pdf:2.9MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor" conducted in FY2020. We are developing a one-dimensional optical fiber radiation sensor that can estimate the radioactive source distribution "along lines" instead of "at points". To improve the conventional time-of-flight optical fiber radiation sensor for the application under high dose rate environment, basic evaluation tests were conducted using various optical fibers with different diameters and materials.

Journal Articles

Estimation of I-131 concentration using time history of pulse height distribution at monitoring post and detector response for radionuclide in plume

Hirayama, Hideo*; Kawasaki, Masatsugu; Matsumura, Hiroshi*; Okura, Takehisa; Namito, Yoshihito*; Sanami, Toshiya*; Taki, Mitsumasa; Oishi, Tetsuya; Yoshizawa, Michio

Insights Concerning the Fukushima Daiichi Nuclear Accident, Vol.4; Endeavors by Scientists, p.295 - 307, 2021/10

Journal Articles

Operation experience of Tetrode vacuum tubes in J-PARC Ring RF system

Yamamoto, Masanobu; Furusawa, Masashi*; Hara, Keigo*; Hasegawa, Katsushi*; Nomura, Masahiro; Omori, Chihiro*; Shimada, Taihei; Sugiyama, Yasuyuki*; Tamura, Fumihiko; Yoshii, Masahito*

JPS Conference Proceedings (Internet), 33, p.011022_1 - 011022_6, 2021/03

A Tetrode vacuum tubes (Thales TH589) are used in the J-PARC ring rf system. The operation has started in 2007, and the total operation time is more than 50,000 hours. There is no tube which reaches the end of life except an initial failure in the 3 GeV synchrotron. TH589 has a thoriated tungsten filament and it is carburized to suppress an evaporation of the thorium. The resistance of the filament decreases through the decarburization process after the filament operation has started. The tube constructor suggests that reduced filament voltage up to 10% compared with the rated value is effective to suppress the decarburization. However, the filament current increases even though the voltage is kept constant due to the resistance reduction, and it is observed that an increment of the power dissipation promotes the decarburization. This means that keeping the filament voltage constant is not enough; keeping the power dissipation constant is necessary to prolong the tube life time, and we employ a procedure to decrease the current regularly.

JAEA Reports

Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Nagoya University*

JAEA-Review 2020-063, 44 Pages, 2021/01

JAEA-Review-2020-063.pdf:2.55MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor" conducted in FY2019.

JAEA Reports

Identification of altered phases of fuel debris by laser fluorescence spectroscopy (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2020-053, 64 Pages, 2021/01

JAEA-Review-2020-053.pdf:3.58MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Identification of Altered Phases of Fuel Debris by Laser Fluorescence Spectroscopy" conducted in FY2019.

Journal Articles

Measurement of thick target neutron yield at 180$$^{circ}$$ for a mercury target induced by 3-GeV protons

Matsuda, Hiroki; Iwamoto, Hiroki; Meigo, Shinichiro; Takeshita, Hayato*; Maekawa, Fujio

Nuclear Instruments and Methods in Physics Research B, 483, p.33 - 40, 2020/11

 Times Cited Count:3 Percentile:36.4(Instruments & Instrumentation)

A thick target neutron yield for a mercury target at an angle of 180$$^{circ}$$ from the incident beam direction is measured with the time-of-flight method using a 3-GeV proton beam at the Japan Proton Accelerator Research Complex (J-PARC). Comparing the experimental result with a Monte Carlo particle transport simulation by the Particle and Heavy Ion Transport code System (PHITS) shows that there are apparent discrepancies. We find that this trend is consistent with an experimental result of neutron-induced re- action rates obtained using indium and niobium activation foils. Comparing proton-induced neutron-production double-differential cross-sections for a lead target at backward directions between the PHITS calculation and experimental data suggests that the dis- crepancies for our experiments would be linked to the neutron production calculation around 3 GeV by the PHITS spallation model and/or the calculation of nonelastic cross-sections around 3 GeV in the particle transport simulation.

340 (Records 1-20 displayed on this page)